Singularidade Virtual
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

O que é mecânica quântica? Parte 1

Ir para baixo

O que é mecânica quântica? Parte 1 Empty O que é mecânica quântica? Parte 1

Mensagem por Trinity Sex maio 27, 2016 10:52 pm

A mecânica quântica revolucionou nossas noções de energia, matéria e causalidade. O que pensávamos ser partículas não são partículas nem ondas, mas comportam-se ora como uns, ora como outros. A natureza parece ser intrinsecamente indeterminista e só nos é possível prever médias e probabilidades. No entanto, ao nosso redor há inúmeras tecnologias baseadas na mecânica quântica, como computadores, DVDs e CDs.

No final do século XIX, vários fenômenos físicos pareciam não poder ser explicados pela física da época, hoje chamada “física clássica” ou “newtoniana”. Relacionavam-se com a luz, o calor, os átomos etc. Para dar conta desses fenômenos, toda a física newtoniana teve que ser substituída. O resultado foi o que se chama hoje “física moderna”. Inicialmente, ela era constituída pelas teorias da relatividade (especial e geral) e pela mecânica quântica.

A revolução da física moderna foi muito profunda. Conceitos caros como os de espaço, tempo, matéria e causalidade tiveram que ser revistos. Há muitas características importantes da mecânica quântica diferentes da física clássica, mas vou ater-me aqui a apenas quatro, que talvez possam resumir a essência do seu conteúdo:
a quantização da energia
o salto quântico
a dualidade onda-partícula
o indeterminismo

1. A quantização da energia

Na história da mecânica quântica, esta foi a primeira de suas característica a ser abordada teoricamente. A quantização da energia diz simplesmente que, em certas situações, a energia só pode ter certos valores – digamos, 10, 20 e 30 calorias – estando “proibidos” os valores intermediários. Sabemos hoje que isso acontece em casos onde há partículas “presas”, ou “ligadas” – como os elétrons em um átomo.


Por isso, no mundo macroscópico, parece que a energia é sempre contínua, sem valores proibidos. Mas, no mundo atômico e subatômico, a quantização da energia é algo a ser levado em conta sempre.

Além disso, as distâncias entre os diversos níveis não são sempre os mesmos. Dependem da situação. As energias permitidas para um elétron em uma molécula de hidrogênio são diferentes das para um elétron em uma molécula de oxigênio – apesar dos dois elétrons serem idênticos. A diferença entre dois níveis energéticos é chamada quantum. O plural é quanta, pois é uma palavra do latim.


Como se chegou a essas conclusões

A origem desse conhecimento está nos estudos de Planck de 1900 sobre a emissão de luz por corpos aquecidos (melhor dizendo, um tipo especial dela, cujo curioso nome técnico é “radiação de corpo negro”). Isso é algo que vemos todos os dias (pense num metal incandescente, como o filamento da lâmpada acesa ao lado), mas o problema que Planck atacou era bastante dramático: feitas as contas com a física clássica, a energia da luz emitida dava infinita! Isso não poderia ser possível – caso contrário, qualquer metalzinho incandescente seria capaz de fritar todo o Universo...

O problema foi resolvido quando Planck supôs que a luz não era emitida continuamente, mas em “pacotes” de energia. Esses quanta de luz vieram, depois, a serem chamados fótons. Mais tarde, mostrou-se que a luz em si era constituída de fótons, e não quando era emitida pelos átomos.

Outras pessoas passaram a aplicar conceitos semelhantes em outros problemas até então insolúveis, como Niels Bohr, que em 1913 fez uma nova teoria sobre a estrutura atômica e mostrou que a energia dos elétrons nos átomos também está quantizada. Posteriormente, mostrou-se que a quantização da energia acontece com qualquer partícula ligada.

Tudo isso é interessante, mas não parece ser suficiente para alterar toda a física clássica. Porém, os desdobramentos da hipótese quântica de Planck foram tremendos e atingiram a física quase toda. Por um quarto de século, os cientistas exploraram esses desdobramentos até que, em 1924, conseguiu-se formular uma teoria quântica completa – não só da luz ou dos átomos, mas uma física nova inteira.

No resto deste texto, mostrarei alguns dos principais desdobramentos da teoria dos quanta e como eles levam a alterações radicais na nossa maneira de ver o mundo. Usarei como guia cinco perguntas que aparecem naturalmente por causa da teoria de Planck.


2. O salto quântico

Primeira pergunta: se há tantos casos em que valores intermediários de energia não são permitidos, como então é possível aumentar a energia de qualquer coisa?

Acontece que ela pode ir de um nível para outro sem passar pelos valores intermediários. Usando nosso exemplo “irreal”, vai de 10 para 20 calorias sem passar por 11, 12, por nenhum deles. A isto se chama salto quântico.

O salto quântico foi estabelecido como hipótese em 1913 por Niel Bohr para os elétrons de um átomo de hidrogênio, mas as previsões de sua teoria conseguiam descrever aspectos da luz emitida por esses átomos que eram inexplicáveis pela física clássica. Mais tarde, mostrou-se que estados ligados em qualquer situação funcionam assim.

A figura abaixo esquematiza um elétron em um átomo que absorve luz. Um exemplo comum acontece no interruptor de luz, que é feito de um material fosforescente – ou seja, que absorve luz, mantém-na durante algum tempo e depois a reemite. Por isso ele parece brilhar no escuro: ele continua reemitindo luz até acabar a que absorvia enquanto o ambiente estava iluminado.


Ora, quando absorvem luz, o que os elétrons absorvem é energia luminosa e, assim, aumentam sua energia. Por isso, o elétron só absorve a luz se o fóton que chegar tiver energia suficiente para que esse elétron possa saltar de um nível energético para outro. Senão, ele não absorve e o fóton passa incólume.

O mesmo acontece quando emite luz: só emite a energia necessária para passar de um nível energético para outro de menor energia. Emite a luz, portanto, em “pacotes”: os fótons que Planck estudou. Nada disso acontecia na física clássica: o elétron poderia absorver ou emitir qualquer quantidade de energia.


3. A dualidade onda-partícula

Segunda pergunta: na época de Planck, já havia uma teoria sobre a luz, que dizia que ela era constituída de ondas. Isso era conhecido desde a virada do século XVIII para o XIX e já havia sido fartamente confirmado por observações cuidadosas. Mas a teoria quântica diz que a energia luminosa se distribui em pequenos pacotes. Como compatibilizar as duas visões?

Nos anos seguintes à descoberta de Planck, essa pergunta foi adquirindo tons muito mais dramáticos, pois havia indicações de que os fótons se comportavam como partículas de fato! Isso foi cabalmente demonstrado em 1923 por um experimento de Arthur Compton sobre colisões entre fótons e elétrons. Os elétrons eram desviados de suas trajetórias como se tivessem sido atingidos por corpúsculos – como em choques de bolas de bilhar.

Ora, eu disse acima que já se sabia que a luz era constituída de ondas. Agora, eis que essa visão não funciona mais e a suposição de que ela é constituída por um fluxo de partículas é que passa a funcionar... Como pode ser possível? Não faz sentido alguma coisa ser onda e partícula ao mesmo tempo...!

A solução para isso não foi fácil. Hoje sabemos que a luz não é onda nem um fluxo de partículas: ela é alguma outra coisa, que exibe algumas características de um fluxo de partículas em certas situações e de ondas em outras. A esse comportamento dá-se o nome de “dualidade onda-partícula”. Em geral, a luz se comporta como onda enquanto está em trânsito e apresenta características de partículas quando interage com a matéria (como quando é absorvida por átomos).

O site do Wikipedia em espanhol teve uma idéia muito interessante para explicar a dualidade onda-partícula. Ilustrou com a figura abaixo como o mesmo objeto pode se manifestar de uma forma se visto sob um certo ângulo e de outra se visto sob outro ângulo. Um cilindro produz uma sombra quadrada em uma parede e circular na outra. Se vemos só a sombra, parecerá uma contradição: como algo pode ser redondo e quadrado ao mesmo tempo? Não é um círculo nem um quadrado: ele é uma outra entidade (um cilindro), mas que se manifesta como um quadrado ou como um círculo, dependendo da situação. Mas cuidado: isto é apenas uma analogia. Tanto as ondas como as partículas e as entidades “nem-ondas-nem-partículas” estão no espaço tridimensional comum.




Ondas de matéria

Terceira pergunta: Bem, uma coisa que se pensava que era onda, a luz, era uma entidade dual. E quanto às coisas que se pensava que eram partículas, como os elétrons?

Pois bem: logo descobriu-se que essa dualidade era uma característica geral. Todas as “partículas” não são propriamente corpúsculos no sentido tradicional, mas entidades que se comportam como ondas em certas situações e como partículas em outras. Jamais como ambas simultaneamente.

Quanto maior a massa da partícula, mais pronunciado o comportamento de corpúsculo e menos o comportamento de onda. Para um elétron – que é tão pequeno que é um dos constituintes dos átomos – já foi muito difícil detectar seu comportamento ondulatório, observado pela primeira vez em 1927 pelos físicos Clinton Davisson e Lester Germer. Em 1999, conseguiu-se observar fenômenos ondulatórios na molécula de fulereno, que tem 60 átomos de carbono.

Dito assim, pode parecer que a todos os elétrons corresponde uma onda e essa onda seria sempre a mesma. Afinal, todos os elétrons são idênticos. Mas não é assim. O tipo de onda não depende apenas da partícula em si, mas também da situação em que se encontra.

Por exemplo, a freqüência da onda se relaciona com a velocidade do elétron. Elétrons velozes têm ondas associadas com freqüência mais alta que elétrons mais lentos. Num caso mais geral, as ondas associadas às partículas identificam não só a partícula, mas também o estado em que se encontra. Veja a figura abaixo:


Esse significado dessas ondas só foi esclarecido depois que Werner Heisenberg e Erwin Schrödinger conseguiram construir uma teoria “final” da mecânica quântica, em 1924 e 1925, após um quarto de século em que vários grandes físicos tatearam e tentaram construir toda uma nova mecânica a partir de alguns poucos dados experimentais.

Na verdade, foram duas teorias “finais”, uma de cada autor, mas mostrou-se logo que eram equivalentes. Elas foram construídas a partir de um conjunto de suposições físicas e matemáticas que foram parecendo mais plausíveis à medida que foram sendo feitas as pesquisas anteriores. A relação entre onda e estados físicos vem dessa teoria “final”. Atualmente, usa-se uma mistura das duas, e é isso o que se chama hoje de “mecânica quântica”. Ela vem sendo usada para inúmeras situações físicas com enorme sucesso.
Trinity
Trinity
Admin

Mensagens : 60
Data de inscrição : 27/05/2016

https://singularidadev.forumbrasil.net

Ir para o topo Ir para baixo

Ir para o topo


 
Permissões neste sub-fórum
Não podes responder a tópicos